CNM models, holomorphic functions and projective superspace c-maps

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal holomorphic maps from C to a projective space

A theorem of A. Ostrowski describing meromorphic functions f such that the family {f(λz) : λ ∈ C∗} is normal, is generalized to holomorphic maps from C∗ to a projective space. MSC 2010: 30D45, 32A19.

متن کامل

Normal Holomorphic Maps from C

A theorem of A. Ostrowski describing meromorphic functions f such that the family {f(λz) : λ ∈ C} is normal, is generalized to holomorphic maps from C∗ to a projective space. Let f : C → P be a holomorphic curve and (1) F = (g0, g1, . . . , gn) some homogeneous representation of f . This means that gj are analytic functions in C without common zeros. When n = 1, we have P = C, and f can be iden...

متن کامل

Dynamics of symmetric holomorphic maps on projective spaces

We consider complex dynamics of a critically finite holomorphic map from Pk to Pk, which has symmetries associated with the symmetric group Sk+2 acting on P k, for each k ≥ 1. The Fatou set of each map of this family consists of attractive basins of superattracting points. Each map of this family satisfies Axiom A.

متن کامل

Holomorphic Functions and Vector Bundles on Coverings of Projective Varieties

Let X be a projective manifold, ρ : X̃ → X its universal covering and ρ∗ : V ect(X) → V ect(X̃) the pullback map for the isomorphism classes of vector bundles. This article establishes a connection between the properties of the pullback map ρ∗ and the properties of the function theory on X̃. We prove the following pivotal result: if a universal cover of a projective variety has no nonconstant holo...

متن کامل

Projective C-algebras and Boundary Maps

Both boundary maps in K-theory are expressed in terms of surjections from projective C∗-algebras to semiprojective C∗-algebras. 1. Noncommutative Cells and Boundaries Cells are absolute retracts that tie together spheres of different dimensions. The analog of an absolute retract for a C-algebra is being projective. For better or worse, in the category of all C-algebras, we lose the projectivity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Physics B

سال: 1999

ISSN: 0550-3213

DOI: 10.1016/s0550-3213(99)00370-3